8. The base of a 10-ft ladder that is leaning against a wall is pushed towards the wall. When the base is 6 ft from the wall and moving at the rate of 2 ft/sec, how fast is the top of the ladder sliding up the wall?

up the wall? not changing!

- (2) Want $\frac{db}{dt}$ when a=b, $\frac{da}{dt}=-2$.
- (3) $a^2 + b^2 = 10^2$
- (4) $Z a \frac{da}{dt} + Z b \frac{db}{dt} = 0$

(6) $(a(-2) + 8 \frac{db}{dt} = 0$ When a = b: $b = \sqrt{10^2 - b^2} = 8$

- (b) $\frac{db}{dt} = \frac{12}{8} = \frac{3}{2}$
- The top of the ladder is slidling up the wall at a rate of [3] ft/sec.

9. An airplane flies at an altitude of 5 miles toward a point directly over an observer. The speed of the plane is 600 miles per hour. Find the rate at which the angle of elevation is changing when the angle is:

(a)
$$\frac{\pi}{3}$$
 ① $\frac{\times}{2}$ 5

- 2 Want $\frac{d\theta}{dt}$ when $\theta = \frac{\pi}{3}$, $\frac{dx}{dt} = -600$
- 3 cot $\theta = \frac{8}{5}$ use cot θ so x is in the numerator

(5)
$$-\csc^2(\frac{\pi}{3})\frac{d\theta}{dt} = \frac{1}{5}(400)$$

$$\frac{2}{13}\sqrt{3}$$
 $\csc \frac{\pi}{3} = \frac{2}{\sqrt{3}}$

$$(\frac{2}{3})^2 \frac{d\theta}{dt} = -120$$

$$\frac{d\theta}{dt} = \frac{-120}{-4/3} = 90$$

- (b) $\frac{\pi}{4}$ same
 - 2 Want $\frac{d\theta}{dt}$ when $\theta = \frac{\pi}{4}, \frac{dx}{dt} = -600$
 - (3) Same
 - 3 Same

(5)
$$-\csc^{2}(\frac{\pi}{4})\frac{d\theta}{dt} = \frac{1}{5}(-600)$$

$$\frac{1}{\sqrt{4}}$$
1 $\csc \frac{\pi}{4} = \frac{1}{2} = \sqrt{2}$

$$(6) - (\sqrt{2})^2 d\theta = -120$$

$$\frac{d\theta}{dt} = \frac{-120}{-2} = 60$$

10. Two airplanes depart the Purdue Airport. One leaves at noon heading due east at 550 miles per hour and the other leaves at 12:30pm heading due north at 600 miles per hour. How quickly is the distance between them changing at 1:30pm?

(1)
$$a = c$$

(2) Want $\frac{dc}{dt}$ when $b=1.5(550)$, $a=1(1000)$, $\frac{db}{dt}=550$, $\frac{da}{dt}=1000$

(3) $a^2+b^2=c^2$

(4)
$$Za\frac{da}{dt} + Zb\frac{db}{dt} = Zc\frac{dc}{dt}$$

(5)
$$(600(600) + 825(550) = 25\sqrt{1005} \frac{dc}{dt}$$
 $c = \sqrt{825^2 + 600^2}$ $c = \sqrt{25\sqrt{1005}}$ $c = \sqrt{825^2 + 600^2}$ $c = \sqrt{825^2 + 600^2}$

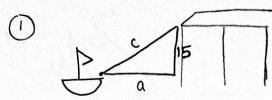
$$\frac{dc}{dt} = \frac{825(550) + 600(600)}{25\sqrt{1665}}$$

$$= \frac{32,500}{\sqrt{1665}} \cdot \frac{1065}{\sqrt{1665}} = \frac{32,500\sqrt{1665}}{1665} = \frac{6500\sqrt{1665}}{333}$$

11. An airplane flying at an altitude of 10 miles passes directly over a radar antenna. When the airplane is 15 miles away, the radar detects that the distance is changing at a rate of 250 miles per hour. What is the speed of the airplane?

- 2) Want $\frac{da}{dt}$ when c=15, $\frac{dc}{dt}=250$
- (3) $a^2 + 10^2 = c^2$

4
$$Za \frac{da}{dt} = Zc \frac{dc}{dt}$$

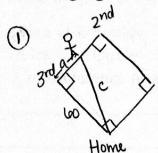

5 $5\sqrt{5} \frac{da}{dt} = 15(250)$

6 $\frac{da}{dt} = \frac{750}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{750\sqrt{5}}{5} = 250\sqrt{5}$

(b)
$$\frac{da}{dt} = \frac{750}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{750\sqrt{5}}{5} = 250\sqrt{5}$$

7 25015 miles/nour

12. A boat is pulled into a dock by means of a winch 15 feet above the deck of the boat. The winch pulls in rope at a rate of 5 feet per second. Determine the speed of the boat when there is 39 feet of rope out.


- (2) Want $\frac{da}{dt}$ when c = 39, $\frac{dc}{dt} = -5$
- 3 $a^2 + 15^2 = c^2$
- (4) Za da = Zc de

(5)
$$36 \frac{da}{dt} = 39(-5)$$

$$\frac{39}{a = (39^2 - 15^2 = 36)}$$
(6) $\frac{da}{dt} = \frac{13}{36} \frac{39(-5)}{12} = \frac{-65}{12}$

$$7$$
 $\frac{65}{12}$ $\frac{4}{\text{sec}}$ (since speed is positive)

13. In softball, the distance between each base is 60 feet. A player is running from second base to third base at a speed of 16 feet per second. Find the rate at which the distance from home plate is changing when the player is 20 feet from second base.

2 Want
$$\frac{dc}{dt}$$
 when $a = 60 - 20 = 40$, $\frac{da}{dt} = -16$

(3)
$$a^2 + (a0^2 = c^2)$$

(4)
$$2a \frac{da}{dt} = 2c \frac{dc}{dt}$$

(5) $40(-16) = 20\sqrt{13} \frac{dc}{dt}$
(6) $\frac{dc}{dt} = -\frac{2}{40}(16) = -\frac{32}{13} \cdot \frac{13}{13} = -\frac{32\sqrt{13}}{13}$
(7) $\frac{32\sqrt{13}}{13} \frac{ft}{sec}$

(b)
$$\frac{dc}{dt} = -\frac{\cancel{40}(10)}{\cancel{20}\cancel{13}} = -\frac{32}{\cancel{13}} \cdot \frac{\cancel{13}}{\cancel{13}} = -\frac{32\cancel{13}}{\cancel{13}}$$